
M A N N I N G

FIFTH EDITION

Craig Walls

Covers Spring 5.0

Praise for Spring in Action, 4th edition

“The best book for Spring—updated and revised.”

—Gregor Zurowski, Sotheby’s

“The classic, remastered and full of awesomeness.”

—Mario Arias, Cake Solutions Ltd.

“Informative, accurate, and insightful!

 —Jeelani Shaik, D3Banking.com

“After ten years, this is still the clearest and most comprehensive introduction to the
core concepts of the Spring platform.”

 —James Wright, Sword-Apak

“This book is a quick and easy way to get into the Spring Framework Universe. Simply
perfect for Java developers.”

—Jens O’Richter, freelance Senior Software Architect

“This book belongs on the bookshelf of any serious Java developer who uses Spring.”

—Jonathan Thoms, Expedia Inc.

“Spring in Action is an excellent travel companion for the huge landscape that is the
Spring Framework.”

—Ricardo Lima, Senado Federal do Brasil

“Pragmatic advice for Java’s most important framework.”

—Mike Roberts, Information Innovators

Spring in Action
Fifth Edition

COVERS SPRING 5.0

CRAIG WALLS

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Project manager: Janet Vail
PO Box 761 Copy editors: Frances Buran, Andy Carroll
Shelter Island, NY 11964 Proofreaders: Melody Dolab, Katie Tennant

Technical proofreader: Joshua White
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294945
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

iii

brief contents
PART 1 FOUNDATIONAL SPRING ..1

1 ■ Getting started with Spring 3

2 ■ Developing web applications 29

3 ■ Working with data 56

4 ■ Securing Spring 84

5 ■ Working with configuration properties 114

PART 2 INTEGRATED SPRING ...135

6 ■ Creating REST services 137

7 ■ Consuming REST services 169

8 ■ Sending messages asynchronously 178

9 ■ Integrating Spring 209

PART 3 REACTIVE SPRING ...239

10 ■ Introducing Reactor 241

11 ■ Developing reactive APIs 269

12 ■ Persisting data reactively 296

BRIEF CONTENTSiv

PART 4 CLOUD-NATIVE SPRING ..321

13 ■ Discovering services 323

14 ■ Managing configuration 343

15 ■ Handling failure and latency 376

PART 5 DEPLOYED SPRING ..393

16 ■ Working with Spring Boot Actuator 395

17 ■ Administering Spring 429

18 ■ Monitoring Spring with JMX 446

19 ■ Deploying Spring 454

v

contents
preface xiii
acknowledgments xv
about this book xvii

PART 1 FOUNDATIONAL SPRING1

1 Getting started with Spring 3

1.1 What is Spring? 4
1.2 Initializing a Spring application 6

Initializing a Spring project with Spring Tool Suite 7
Examining the Spring project structure 11

1.3 Writing a Spring application 17
Handling web requests 17 ■ Defining the view 19
Testing the controller 20 ■ Building and running the
application 21 ■ Getting to know Spring Boot DevTools 23
Let’s review 25

1.4 Surveying the Spring landscape 26
The core Spring Framework 26 ■ Spring Boot 26
Spring Data 27 ■ Spring Security 27 ■ Spring Integration
and Spring Batch 27 ■ Spring Cloud 28

CONTENTSvi

2 Developing web applications 29

2.1 Displaying information 30
Establishing the domain 31 ■ Creating a controller class 32
Designing the view 35

2.2 Processing form submission 40
2.3 Validating form input 45

Declaring validation rules 46 ■ Performing validation at
form binding 48 ■ Displaying validation errors 49

2.4 Working with view controllers 51
2.5 Choosing a view template library 52

Caching templates 54

3 Working with data 56

3.1 Reading and writing data with JDBC 57
Adapting the domain for persistence 59 ■ Working with
JdbcTemplate 60 ■ Defining a schema and preloading data 64
Inserting data 66

3.2 Persisting data with Spring Data JPA 75
Adding Spring Data JPA to the project 76 ■ Annotating the
domain as entities 76 ■ Declaring JPA repositories 80
Customizing JPA repositories 81

4 Securing Spring 84

4.1 Enabling Spring Security 85
4.2 Configuring Spring Security 86

In-memory user store 88 ■ JDBC-based user store 89
LDAP-backed user store 92 ■ Customizing user
authentication 96

4.3 Securing web requests 103
Securing requests 104 ■ Creating a custom login page 106
Logging out 109 ■ Preventing cross-site request forgery 109

4.4 Knowing your user 110

5 Working with configuration properties 114

5.1 Fine-tuning autoconfiguration 115
Understanding Spring’s environment abstraction 116
Configuring a data source 117 ■ Configuring the embedded
server 119 ■ Configuring logging 120 ■ Using special
property values 121

CONTENTS vii

5.2 Creating your own configuration properties 122
Defining configuration properties holders 124 ■ Declaring
configuration property metadata 126

5.3 Configuring with profiles 129
Defining profile-specific properties 130 ■ Activating profiles 131
Conditionally creating beans with profiles 132

PART 2 INTEGRATED SPRING135

6 Creating REST services 137

6.1 Writing RESTful controllers 138
Retrieving data from the server 140 ■ Sending data to the
server 145 ■ Updating data on the server 146 ■ Deleting data
from the server 148

6.2 Enabling hypermedia 149
Adding hyperlinks 152 ■ Creating resource assemblers 154
Naming embedded relationships 159

6.3 Enabling data-backed services 160
Adjusting resource paths and relation names 162 ■ Paging and
sorting 164 ■ Adding custom endpoints 165 ■ Adding custom
hyperlinks to Spring Data endpoints 167

7 Consuming REST services 169

7.1 Consuming REST endpoints with RestTemplate 170
GETting resources 172 ■ PUTting resources 173
DELETEing resources 174 ■ POSTing resource data 174

7.2 Navigating REST APIs with Traverson 175

8 Sending messages asynchronously 178

8.1 Sending messages with JMS 179
Setting up JMS 179 ■ Sending messages with JmsTemplate 181
Receiving JMS messages 188

8.2 Working with RabbitMQ and AMQP 192
Adding RabbitMQ to Spring 193 ■ Sending messages with
RabbitTemplate 194 ■ Receiving message from RabbitMQ 198

8.3 Messaging with Kafka 202
Setting up Spring for Kafka messaging 203 ■ Sending messages
with KafkaTemplate 204 ■ Writing Kafka listeners 206

CONTENTSviii

9 Integrating Spring 209

9.1 Declaring a simple integration flow 210
Defining integration flows with XML 211 ■ Configuring
integration flows in Java 213 ■ Using Spring Integration’s
DSL configuration 215

9.2 Surveying the Spring Integration landscape 216
Message channels 217 ■ Filters 219 ■ Transformers 220
Routers 221 ■ Splitters 223 ■ Service activators 225
Gateways 227 ■ Channel adapters 228 ■ Endpoint
modules 230

9.3 Creating an email integration flow 231

PART 3 REACTIVE SPRING ...239

10 Introducing Reactor 241

10.1 Understanding reactive programming 242
Defining Reactive Streams 243

10.2 Getting started with Reactor 245
Diagramming reactive flows 246 ■ Adding Reactor
dependencies 247

10.3 Applying common reactive operations 248
Creating reactive types 249 ■ Combining reactive types 253
Transforming and filtering reactive streams 257 ■ Performing
logic operations on reactive types 266

11 Developing reactive APIs 269

11.1 Working with Spring WebFlux 269
Introducing Spring WebFlux 271 ■ Writing reactive
controllers 272

11.2 Defining functional request handlers 276
11.3 Testing reactive controllers 279

Testing GET requests 279 ■ Testing POST requests 282
Testing with a live server 284

11.4 Consuming REST APIs reactively 285
GETting resources 285 ■ Sending resources 287
Deleting resources 288 ■ Handling errors 289
Exchanging requests 290

CONTENTS ix

11.5 Securing reactive web APIs 292
Configuring reactive web security 292 ■ Configuring a reactive
user details service 294

12 Persisting data reactively 296

12.1 Understanding Spring Data’s reactive story 297
Spring Data reactive distilled 297 ■ Converting between
reactive and non-reactive types 298 ■ Developing reactive
repositories 300

12.2 Working with reactive Cassandra repositories 300
Enabling Spring Data Cassandra 301 ■ Understanding Cassandra
data modeling 303 ■ Mapping domain types for Cassandra
persistence 304 ■ Writing reactive Cassandra repositories 309

12.3 Writing reactive MongoDB repositories 312
Enabling Spring Data MongoDB 312 ■ Mapping domain types
to documents 314 ■ Writing reactive MongoDB repository
interfaces 317

PART 4 CLOUD-NATIVE SPRING....................................321

13 Discovering services 323

13.1 Thinking in microservices 324
13.2 Setting up a service registry 326

Configuring Eureka 330 ■ Scaling Eureka 333

13.3 Registering and discovering services 334
Configuring Eureka client properties 335 ■ Consuming
services 337

14 Managing configuration 343

14.1 Sharing configuration 344
14.2 Running Config Server 345

Enabling Config Server 346 ■ Populating the configuration
repository 349

14.3 Consuming shared configuration 352
14.4 Serving application- and profile-specific properties 353

Serving application-specific properties 354 ■ Serving properties
from profiles 355

14.5 Keeping configuration properties secret 357
Encrypting properties in Git 357 ■ Storing secrets in Vault 360

CONTENTSx

14.6 Refreshing configuration properties on the fly 364
Manually refreshing configuration properties 365
Automatically refreshing configuration properties 367

15 Handling failure and latency 376

15.1 Understanding circuit breakers 376
15.2 Declaring circuit breakers 378

Mitigating latency 381 ■ Managing circuit breaker
thresholds 382

15.3 Monitoring failures 383
Introducing the Hystrix dashboard 384 ■ Understanding Hystrix
thread pools 387

15.4 Aggregating multiple Hystrix streams 389

PART 5 DEPLOYED SPRING ..393

16 Working with Spring Boot Actuator 395

16.1 Introducing Actuator 396
Configuring Actuator’s base path 397 ■ Enabling and
disabling Actuator endpoints 398

16.2 Consuming Actuator endpoints 399
Fetching essential application information 400 ■ Viewing
configuration details 403 ■ Viewing application activity 411
Tapping runtime metrics 413

16.3 Customizing Actuator 416
Contributing information to the /info endpoint 416
Defining custom health indicators 421 ■ Registering
custom metrics 422 ■ Creating custom endpoints 424

16.4 Securing Actuator 426

17 Administering Spring 429

17.1 Using the Spring Boot Admin 430
Creating an Admin server 430 ■ Registering Admin clients 431

17.2 Exploring the Admin server 435
Viewing general application health and information 436
Watching key metrics 437 ■ Examining environment
properties 438 ■ Viewing and setting logging levels 439
Monitoring threads 440 ■ Tracing HTTP requests 441

CONTENTS xi

17.3 Securing the Admin server 442
Enabling login in the Admin server 443 ■ Authenticating with
the Actuator 444

18 Monitoring Spring with JMX 446

18.1 Working with Actuator MBeans 446
18.2 Creating your own MBeans 449
18.3 Sending notifications 451

19 Deploying Spring 454

19.1 Weighing deployment options 455
19.2 Building and deploying WAR files 456
19.3 Pushing JAR files to Cloud Foundry 458
19.4 Running Spring Boot in a Docker container 461
19.5 The end is where we begin 465

appendix Bootstrapping Spring applications 466

index 487

xiii

preface
After nearly 15 years of working with Spring and having written five editions of this
book (not to mention Spring Boot in Action), you’d think that it’d be hard to come up
with something exciting and new to say about Spring when writing the preface for this
book. But nothing could be further from the truth!

 Every single release of Spring, Spring Boot, and all of the other projects in the
Spring ecosystem unleashes some new amazing capabilities that rekindle the fun in
developing applications. With Spring reaching a significant milestone with its 5.0
release and Spring Boot releasing version 2.0, there’s so much more Spring to enjoy
that it was a no-brainer to write another edition of Spring in Action.

 The big story of Spring 5 is reactive programming support, including Spring Web-
Flux, a brand new reactive web framework that borrows its programming model from
Spring MVC, allowing developers to create web applications that scale better and make
better use of fewer threads. Moving toward the backend of a Spring application, the lat-
est edition of Spring Data enables the creation of reactive, non-blocking data reposito-
ries. And all of this is built on top of Project Reactor, a Java library for working with
reactive types.

 In addition to the new reactive programming features of Spring 5, Spring Boot 2
now provides even more autoconfiguration support than ever before as well as a com-
pletely reimagined Actuator for peeking into and manipulating a running application.

 What’s more, as developers look to break down their monolithic applications into
discrete microservices, Spring Cloud provides facilities that make it easy to configure
and discover microservices, as well as fortify them so they’re more resilient to failure.

PREFACExiv

 I’m happy to say that this fifth edition of Spring in Action covers all of this and
more! If you’re a seasoned veteran with Spring, Spring in Action, Fifth Edition will be
your guide to everything new that Spring has to offer. On the other hand, if you’re
new to Spring, then there’s no better time than now to get in on the action and the
first few chapters will get you up and running in no time!

 It’s been an exciting 15 years of working with Spring. And now that I’ve written this
fifth edition of Spring in Action, I’m eager to share that excitement with you!

xv

acknowledgments
One of the most amazing things that Spring and Spring Boot do is to automatically
provide all of the foundational plumbing for an application, leaving you as a devel-
oper to focus primarily on the logic that’s unique to your application. Unfortunately,
no such magic exists for writing a book. Or does it?

 At Manning, there were several people working their magic to make sure that this
book is the best it can possibly be. Many thanks in particular to Jenny Stout, my devel-
opment editor, and to the production team, including project manager Janet Vail,
copyeditors Andy Carroll and Frances Buran, and proofreaders Katie Tennant and
Melody Dolab. Thanks, too, to technical proofer Joshua White who was thorough
and helpful.

 Along the way, we got feedback from several peer reviewers who made sure that the
book stayed on target and covered the right stuff. For this, my thanks goes to Andrea
Barisone, Arnaldo Ayala, Bill Fly, Colin Joyce, Daniel Vaughan, David Witherspoon,
Eddu Melendez, Iain Campbell, Jettro Coenradie, John Gunvaldson, Markus Matzker,
Nick Rakochy, Nusry Firdousi, Piotr Kafel, Raphael Villela, Riccardo Noviello, Sergio
Fernandez Gonzalez, Sergiy Pylypets, Thiago Presa, Thorsten Weber, Waldemar
Modzelewski, Yagiz Erkan, and Željko Trogrlić.

 As always, there’d be absolutely no point in writing this book if it weren’t for the
amazing work done by the members of the Spring engineering team. I’m amazed at
what you’ve created and how we continue to change how software is developed.

 Many thanks to my fellow speakers on the No Fluff/Just Stuff tour. I continue to
learn so much from every one of you. I especially want to thank Brian Sletten, Nate

ACKNOWLEDGMENTSxvi

Schutta, and Ken Kousen for conversations and emails about Spring that have helped
shape this book.

 Once again, I’d like to thank the Phoenicians. You know what you did.
 Finally, to my beautiful wife Raymie, the love of my life, my sweetest dream, and my

inspiration: Thank you for your encouragement and for putting up with another book
project. And to my sweet and wonderful girls, Maisy and Madi: I am so proud of you
and of the amazing young ladies you are becoming. I love all of you more than you
can imagine or I can possible express.

xvii

about this book
Spring in Action, Fifth Edition was written to equip you to build amazing applications
using the Spring Framework, Spring Boot, and a variety of ancillary members of the
Spring ecosystem. It begins by showing you how to develop web-based, database-
backed Java applications with Spring and Spring Boot. It then expands on the essen-
tials by showing how to integrate with other applications, program using reactive
types, and then break an application into discrete microservices. Finally, it discusses
how to ready an application for deployment.

 Although all of the projects in the Spring ecosystem provide excellent documenta-
tion, this book does something that none of the reference documents do: provide a
hands-on, project-driven guide to bringing the elements of Spring together to build a
real application.

Who should read this book

Spring in Action, 5th edition is for Java developers who want to get started with Spring
Boot and the Spring Framework as well as for seasoned Spring developers who want to
go beyond the basics and learn the newest features of Spring.

How this book is organized: a roadmap

The book has 5 parts spanning 19 chapters. Part 1 covers the foundational topics of
building Spring applications:

■ Chapter 1 introduces Spring and Spring Boot and how to initialize a Spring
project. In this chapter, you’ll take the first steps toward building a Spring appli-
cation that you’ll expand upon throughout the course of the book.

ABOUT THIS BOOKxviii

■ Chapter 2 discusses building the web layer of an application using Spring MVC.
In this chapter, you’ll build controllers that handle web requests and views that
render information in the web browser.

■ Chapter 3 delves into the backend of a Spring application where data is per-
sisted to a relational database.

■ In chapter 4, you’ll use Spring Security to authenticate users and prevent unau-
thorized access to an application.

■ Chapter 5 reveals how to configure a Spring application using Spring Boot con-
figuration properties. You’ll also learn how to selectively apply configuration
using profiles.

Part 2 covers topics that help integrate your Spring application with other applications:

■ Chapter 6 expands on the discussion of Spring MVC started in chapter 2 by
looking at how to write REST APIs in Spring.

■ Chapter 7 turns the tables on chapter 6 to show how a Spring application can
consume a REST API.

■ Chapter 8 looks at using asynchronous communication to enable a Spring
application to both send and receive messages using the Java Message Service,
RabbitMQ, or Kafka.

■ Chapter 9 discusses declarative application integration using the Spring Inte-
gration project.

Part 3 explores the exciting new support for reactive programming in Spring:

■ Chapter 10 introduces Project Reactor, the reactive programming library that
underpins Spring 5’s reactive features.

■ Chapter 11 revisits REST API development, introducing Spring WebFlex, a new
web framework that borrows much from Spring MVC while offering a new reac-
tive model for web development.

■ Chapter 12 takes a look at writing reactive data persistence with Spring Data to
read and write data to Cassandra and Mongo databases.

Part 4 breaks down the monolithic application model, introducing you to Spring
Cloud and microservice development:

■ Chapter 13 dives into service discovery, using Spring with Netflix’s Eureka regis-
try to both register and discover Spring-based microservices.

■ Chapter 14 shows how to centralize application configuration in a configura-
tion server that shares configuration across multiple microservices.

■ Chapter 15 introduces the circuit breaker pattern with Hystrix, enabling micro-
services that are resilient in the face of failure.

In part 5, you’ll ready an application for production and see how to deploy it:

■ Chapter 16 introduces the Spring Boot Actuator, an extension to Spring Boot
that exposes the internals of a running Spring application as REST endpoints.

ABOUT THIS BOOK xix

■ In chapter 17 you’ll see how to use the Spring Boot Admin to put a user-friendly
browser-based administrative application on top of the Actuator.

■ Chapter 18 discusses how to expose and consume Spring beans as JMX MBeans.
■ Finally, in chapter 19 you’ll see how to deploy your Spring application in a vari-

ety of production environments.

In general, developers new to Spring should start with chapter 1 and work through
each chapter sequentially. Experienced Spring developers may prefer to jump in at
any point that interests them. Even so, each chapter builds upon the previous chapter,
so there may be some context missing if you dive into the middle of the book.

About the code

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/spring-in-action-fifth-edition as well as
from the author’s GitHub account at github.com/habuma/spring-in-action-5-samples.

Book forum

Purchase of Spring in Action, 5th edition, includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://forums.manning.com/forums/spring-in-action-fifth-edition.
You can also learn more about Manning’s forums and the rules of conduct at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

ABOUT THIS BOOKxx

Other online resources

Need additional help?

■ The Spring website has several useful getting-started guides (some of which
were written by the author of this book) at https://spring.io/guides.

■ The Spring tag at StackOverflow (https://stackoverflow.com/questions/tagged/
spring) as well as the Spring Boot tag at StackOverflow are great places to ask
questions and help others with Spring. Helping someone else with their Spring
questions is a great way to learn Spring!

About the author

CRAIG WALLS is a principal engineer with Pivotal. He’s a zealous promoter of the
Spring Framework, speaking frequently at local user groups and conferences and writ-
ing about Spring. When he’s not slinging code, Craig is planning his next trip to Dis-
ney World or Disneyland and spending as much time as he can with his wife, two
daughters, two birds, and three dogs.

About the cover illustration

The figure on the cover of Spring in Action, 5th edition, is “Le Caraco,” or an inhabi-
tant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak, which
boasts an ancient hilltop castle with magnificent views of the Dead Sea and surround-
ing plains. The illustration is taken from a French travel book, Encyclopédie des Voyages

by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
France and abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the dis-
tinctiveness and individuality of the world’s towns and provinces just two hundred
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period, and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life. We at Manning celebrate the inventiveness, the initiative, and the
fun of the computer business with book covers based on the rich diversity of regional
life two centuries ago brought back to life by the pictures from this travel guide.

Part 1

Foundational Spring

Part 1 of this book will get you started writing a Spring application, learning
the foundations of Spring along the way.

 In chapter 1, I’ll give you a quick overview of Spring and Spring Boot essen-
tials and show you how to initialize a Spring project as you work on building
Taco Cloud, your first Spring application. In chapter 2, you’ll dig deeper into
the Spring MCV and learn how to present model data in the browser and how to
process and validate form input. You’ll also get some tips on choosing a view tem-
plate library. You’ll add data persistence to the Taco Cloud application in chapter
3. There, we’ll cover using Spring’s JDBC template, how to insert data, and how to
declare JPA repositories with Spring Data. Chapter 4 covers security for your
Spring application, including autoconfiguring Spring Security, defining custom
user storage, customizing the login page, and securing against cross-site request
forgery (CSRF) attacks. To close out part 1, we'll look at configuration properties
in chapter 5. You’ll learn how to fine-tune autoconfigured beans, apply configura-
tion properties to application components, and work with Spring profiles.

3

Getting started
with Spring

Although the Greek philosopher Heraclitus wasn’t well known as a software devel-
oper, he seemed to have a good handle on the subject. He has been quoted as say-
ing, “The only constant is change.” That statement captures a foundational truth of
software development.

 The way we develop applications today is different than it was a year ago, 5 years
ago, 10 years ago, and certainly 15 years ago, when an initial form of the Spring
Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design

and Development (Wrox, 2002, http://mng.bz/oVjy).
 Back then, the most common types of applications developed were browser-

based web applications, backed by relational databases. While that type of develop-
ment is still relevant, and Spring is well equipped for those kinds of applications,
we’re now also interested in developing applications composed of microservices
destined for the cloud that persist data in a variety of databases. And a new interest
in reactive programming aims to provide greater scalability and improved perfor-
mance with non-blocking operations.

This chapter covers

 Spring and Spring Boot essentials

 Initializing a Spring project

 An overview of the Spring landscape

4 CHAPTER 1 Getting started with Spring

 As software development evolved, the Spring Framework also changed to address
modern development concerns, including microservices and reactive programming.
Spring also set out to simplify its own development model by introducing Spring Boot.

 Whether you’re developing a simple database-backed web application or con-
structing a modern application built around microservices, Spring is the framework
that will help you achieve your goals. This chapter is your first step in a journey
through modern application development with Spring.

1.1 What is Spring?

I know you’re probably itching to start writing a Spring application, and I assure you
that before this chapter ends, you’ll have developed a simple one. But first, let me set
the stage with a few basic Spring concepts that will help you understand what makes
Spring tick.

 Any non-trivial application is composed of many components, each responsible for
its own piece of the overall application functionality, coordinating with the other
application elements to get the job done. When the application is run, those compo-
nents somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application con-

text, that creates and manages application components. These components, or beans,
are wired together inside the Spring application context to make a complete applica-
tion, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together
to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection

(DI). Rather than have components create and maintain the lifecycle of other beans
that they depend on, a dependency-injected application relies on a separate entity
(the container) to create and maintain all components and inject those into the beans
that need them. This is done typically through constructor arguments or property
accessor methods.

 For example, suppose that among an application’s many components, there are
two that you’ll address: an inventory service (for fetching inventory levels) and a prod-
uct service (for providing basic product information). The product service depends
on the inventory service to be able to provide a complete set of information about
products. Figure 1.1 illustrates the relationships between these beans and the Spring
application context.

 On top of its core container, Spring and a full portfolio of related libraries offer a
web framework, a variety of data persistence options, a security framework, integra-
tion with other systems, runtime monitoring, microservice support, a reactive pro-
gramming model, and many other features necessary for modern application
development.

 Historically, the way you would guide Spring’s application context to wire beans
together was with one or more XML files that described the components and their
relationship to other components. For example, the following XML declares two

5What is Spring?

beans, an InventoryService bean and a ProductService bean, and wires the Inven-
toryService bean into ProductService via a constructor argument:

<bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

In recent versions of Spring, however, a Java-based configuration is more common.
The following Java-based configuration class is equivalent to the XML configuration:

@Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

The @Configuration annotation indicates to Spring that this is a configuration class
that will provide beans to the Spring application context. The configuration’s class meth-
ods are annotated with @Bean, indicating that the objects they return should be added
as beans in the application context (where, by default, their respective bean IDs will
be the same as the names of the methods that define them).

Inventory

service

Injected into

Other application components also managed by Spring

Product

service

Spring application context

Figure 1.1 Application components are managed and injected into each

other by the Spring application context.

6 CHAPTER 1 Getting started with Spring

 Java-based configuration offers several benefits over XML-based configuration,
including greater type safety and improved refactorability. Even so, explicit configura-
tion with either Java or XML is only necessary if Spring is unable to automatically con-
figure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring

and component scanning. With component scanning, Spring can automatically discover
components from an application’s classpath and create them as beans in the Spring
application context. With autowiring, Spring automatically injects the components
with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has
gone well beyond component scanning and autowiring. Spring Boot is an extension
of the Spring Framework that offers several productivity enhancements. The most
well-known of these enhancements is autoconfiguration, where Spring Boot can make
reasonable guesses of what components need to be configured and wired together,
based on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration. But
I can’t. You see, autoconfiguration is much like the wind. You can see the effects of it,
but there’s no code that I can show you and say “Look! Here’s an example of autocon-
figuration!” Stuff happens, components are enabled, and functionality is provided
without writing code. It’s this lack of code that’s essential to autoconfiguration and
what makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit
configuration (whether with XML or Java) required to build an application. In fact, by
the time you finish the example in this chapter, you’ll have a working Spring applica-
tion that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine
developing Spring applications without it. For that reason, this book treats Spring and
Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possi-
ble, and explicit configuration only when necessary. And, because Spring XML config-
uration is the old-school way of working with Spring, we’ll focus primarily on Spring’s
Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes the
phrase in action, so let’s get moving, and you can start writing your first application
with Spring.

1.2 Initializing a Spring application

Through the course of this book, you’ll create Taco Cloud, an online application
for ordering the most wonderful food created by man—tacos. Of course, you’ll use
Spring, Spring Boot, and a variety of related libraries and frameworks to achieve
this goal.

 You’ll find several options for initializing a Spring application. Although I could
walk you through the steps of manually creating a project directory structure and

7Initializing a Spring application

defining a build specification, that’s wasted time—time better spent writing applica-
tion code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your
application.

 The Spring Initializr is both a browser-based web application and a REST API,
which can produce a skeleton Spring project structure that you can flesh out with
whatever functionality you want. Several ways to use Spring Initializr follow:

 From the web application at http://start.spring.io
 From the command line using the curl command
 From the command line using the Spring Boot command-line interface
 When creating a new project with Spring Tool Suite
 When creating a new project with IntelliJ IDEA
 When creating a new project with NetBeans

Rather than spend several pages of this chapter talking about each one of these options,
I’ve collected those details in the appendix. In this chapter, and throughout this book,
I’ll show you how to create a new project using my favorite option: Spring Initializr
support in the Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environ-
ment. But it also offers a handy Spring Boot Dashboard feature that (at least at the
time I write this) isn’t available in any of the other IDE options.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over
to the appendix and substitute the Initializr option that suits you best for the
instructions in the following sections. But know that throughout this book, I may
occasionally reference features specific to Spring Tool Suite, such as the Spring Boot
Dashboard. If you’re not using Spring Tool Suite, you’ll need to adapt those instruc-
tions to fit your IDE.

1.2.1 Initializing a Spring project with Spring Tool Suite

To get started with a new Spring project in Spring Tool Suite, go to the File menu and
select New, and then Spring Starter Project. Figure 1.2 shows the menu structure to
look for.

Once you select Spring Starter Project, a new project wizard dialog (figure 1.3) appears.
The first page in the wizard asks you for some general project information, such as the
project name, description, and other essential information. If you’re familiar with the

Figure 1.2 Starting a new project with the Initializr in Spring Tool Suite

8 CHAPTER 1 Getting started with Spring

contents of a Maven pom.xml file, you’ll recognize most of the fields as items that end
up in a Maven build specification. For the Taco Cloud application, fill in the dialog as
shown in figure 1.3, and then click Next.

The next page in the wizard lets you select dependencies to add to your project (see
figure 1.4). Notice that near the top of the dialog, you can select which version of
Spring Boot you want to base your project on. This defaults to the most current ver-
sion available. It’s generally a good idea to leave it as is unless you need to target a
different version.

 As for the dependencies themselves, you can either expand the various sections
and seek out the desired dependencies manually, or search for them in the search box
at the top of the Available list. For the Taco Cloud application, you’ll start with the
dependencies shown in figure 1.4.

Figure 1.3 Specifying general project information for the Taco Cloud application

9Initializing a Spring application

At this point, you can click Finish to generate the project and add it to your work-
space. But if you’re feeling slightly adventurous, click Next one more time to see the
final page of the new starter project wizard, as shown in figure 1.5.

 By default, the new project wizard makes a call to the Spring Initializr at
http://start.spring.io to generate the project. Generally, there’s no need to override
this default, which is why you could have clicked Finish on the second page of the

Figure 1.4 Choosing starter dependencies

